By Lionel Porcheron
Read or Download Maple, cours et applications PDF
Similar software: systems: scientific computing books
Intuitive Probability and Random Processes using MATLAB
Intuitive likelihood and Random techniques utilizing MATLAB® is an creation to likelihood and random approaches that merges concept with perform. in response to the author’s trust that basically "hands-on" adventure with the fabric can advertise intuitive knowing, the technique is to inspire the necessity for conception utilizing MATLAB examples, through thought and research, and eventually descriptions of "real-world" examples to acquaint the reader with a large choice of functions.
Elektromagnetische Felder und Netzwerke: Anwendungen in Mathcad und PSpice
Thema des Buches ist die umfassende Darstellung der Berechnung elektromagnetischer Felder und Netzwerke unter besonderer Berücksichtigung moderner Computerprogramme, speziell Mathcad und PSpice. Zielgruppe sind Studenten der Elektrotechnik oder Physik der Hochschul-Eingangssemester, aber auch Dozenten, die sich in die Anwendung dieser Programmpakete einarbeiten wollen.
Gewöhnliche Differentialgleichungen: Theorie und Praxis - vertieft und visualisiert mit Maple®
Die Theorie der Gewöhnlichen Differentialgleichungen ist ein grundlegendes und unverändert aktuelles Gebiet der Mathematik. Das vorliegende Buch führt nicht nur äußerst sorgfältig und umfassend in die Theorie ein, sondern vermittelt auch aufgrund der zahlreichen vollständig durchgerechneten Beispiele einen Einblick in deren Anwendungspraxis.
Additional resources for Maple, cours et applications
Example text
2. Now it is clear that the values of X are not equally likely. 2: Histogram for sum of two equally likely numbers, both chosen in interval [0,1]. to be much more probable. Hence, we have generated a "counterexample" to the proposed theorem, or at least some evidence to the contrary. We can build up our intuition by continuing with our experimentation. Attempting to justify the observed occurrences of X, we might suppose that the probabilities are higher near one because there are more ways to obtain these values.
2;. 10. 7 for the true PDF). 5. 10: Estimated PDF of X^ for X Gaussian. 3. 11. 11: Estimated and true mean. 5 - Multiple random variables Consider an experiment that yields two random variables or the vector random variable [Xi X2]-^, where T denotes the transpose. An example might be the choice of a point in the square {(x^y) : 0 < x < 1,0 < y < 1} according to some procedure. This procedure may or may not cause the value of X2 to depend on the value of xi. 12a, then we would say that there is no dependency between Xi and X2.
A set is defined as a collection of objects, for example, the set of students in a probability class. 1) or by the description method A = {students: each student is enrolled in the probability class} where the ":" is read as "such that". } (enumeration) B = {/ : J is an integer and / > 1} (description). 2) Each object in the set is called an element and each element is distinct. For example, the sets {1,2,3} and {1,2,1,3} are equivalent. There is no reason to list an element in a set more than once.
- Globalization, Critique and Social Theory: Diagnoses and
- Norbert Elias (Key Sociologists) by Robert van Krieken