Read or Download Maple 11 Quick Reference Card PDF
Similar software: systems: scientific computing books
Intuitive Probability and Random Processes using MATLAB
Intuitive chance and Random tactics utilizing MATLAB® is an creation to likelihood and random procedures that merges thought with perform. in accordance with the author’s trust that purely "hands-on" adventure with the fabric can advertise intuitive figuring out, the technique is to inspire the necessity for concept utilizing MATLAB examples, by means of conception and research, and eventually descriptions of "real-world" examples to acquaint the reader with a wide selection of functions.
Elektromagnetische Felder und Netzwerke: Anwendungen in Mathcad und PSpice
Thema des Buches ist die umfassende Darstellung der Berechnung elektromagnetischer Felder und Netzwerke unter besonderer Berücksichtigung moderner Computerprogramme, speziell Mathcad und PSpice. Zielgruppe sind Studenten der Elektrotechnik oder Physik der Hochschul-Eingangssemester, aber auch Dozenten, die sich in die Anwendung dieser Programmpakete einarbeiten wollen.
Gewöhnliche Differentialgleichungen: Theorie und Praxis - vertieft und visualisiert mit Maple®
Die Theorie der Gewöhnlichen Differentialgleichungen ist ein grundlegendes und unverändert aktuelles Gebiet der Mathematik. Das vorliegende Buch führt nicht nur äußerst sorgfältig und umfassend in die Theorie ein, sondern vermittelt auch aufgrund der zahlreichen vollständig durchgerechneten Beispiele einen Einblick in deren Anwendungspraxis.
Extra info for Maple 11 Quick Reference Card
Sample text
The fuzzy base rule is as given in the table 1-1. 2 are assumed as mentioned in the table 1-2. Table 1-2. 2 Figure 1-20. Relationship between crisp value and fuzzy membership for the Input variable X in the example 1. 4 ___________________________________________________________ fuzzygv . m posx=[0 3 5 7 10]; maxx=max(posx); posx=posx/max(posx); posy=[0 20 45 65 100]; maxy=max(posy); posy=posy/max(posy); posz=[0 35 70 90 100]; maxz=max(posz); posz=posz/max(posz); i=posx(1):1/999:posx(2); j=(posx(2)):(1/999):posx(3); k=(posx(3)):(1/999):posx(4); l=(posx(4)):(1/999):posx(5); xsmall=[1/posx(2)*i (-1/(posx(3)-posx(2))*(j-posx(3))) zeros(1,length([k l]))]; xmedium =[zeros(1,length([i])) (1/(posx(3)-posx(2))*(j-posx(2))) (-1/(posx(4)posx(3))*(k-posx(4))) zeros(1,length([l]))]; xlarge=[zeros(1,length([i j])) (1/(posx(4)-posx(3))*(k-posx(3))) (-1/(posx(5)-posx(4))*(lposx(5))) ]; figure plot([i j k l]*maxx,xsmall,':'); hold plot([i j k l]*maxx,xmedium,'-'); plot([i j k l]*maxx,xlarge,'--'); xlabel('crisp value') ylabel('fuzzy value') title('XINPUT') i=posy(1):1/999:posy(2); j=(posy(2)):(1/999):posy(3); k=(posy(3)):(1/999):posy(4); l=(posy(4)):(1/999):posy(5); ysmall=[1/posy(2)*i (-1/(posy(3)-posy(2))*(j-posy(3))) zeros(1,length([k l]))]; 42 Chapter 1 ymedium =[zeros(1,length([i])) (1/(posy(3)-posy(2))*(j-posy(2))) (-1/(posy(4)posy(3))*(k-posy(4))) zeros(1,length([l]))]; ylarge=[zeros(1,length([i j])) (1/(posy(4)-posy(3))*(k-posy(3))) (-1/(posy(5)-posy(4))*(lposy(5))) ]; figure plot([i j k l]*maxy,ysmall,':'); hold plot([i j k l]*maxy,ymedium,'-'); plot([i j k l]*maxy,ylarge,'--'); xlabel('crisp value') ylabel('fuzzy value') title('YINPUT') i=posz(1):1/999:posz(2); j=(posz(2)):(1/999):posz(3); k=(posz(3)):(1/999):posz(4); l=(posz(4)):(1/999):posz(5); zsmall=[1/posz(2)*i (-1/(posz(3)-posz(2))*(j-posz(3))) zeros(1,length([k l]))]; zmedium =[zeros(1,length([i])) (1/(posz(3)-posz(2))*(j-posz(2))) (-1/(posz(4)posz(3))*(k-posz(4))) zeros(1,length([l]))]; zlarge=[zeros(1,length([i j])) (1/(posz(4)-posz(3))*(k-posz(3))) (-1/(posz(5)-posz(4))*(lposz(5))) ]; figure plot([i j k l]*maxz,zsmall,':'); hold plot([i j k l]*maxz,zmedium,'-'); plot([i j k l]*maxz,zlarge,'--'); xlabel('crisp value') ylabel('fuzzy value') title('ZOUTPUT') xinput=[6]; xinput=round(((xinput/maxx)*1000)) yinput=[50]; yinput=round(((yinput/maxy)*1000)) %fuzzy values xfuzzy=[xsmall(xinput) xmedium(xinput) xlarge(xinput)]; yfuzzy=[ysmall(yinput) ymedium(yinput) ylarge(yinput)]; 1.
Suppose if q3 is the lowest among the values in the vector, the number 3 is assigned to the variable u8. This is called one iteration. Step 4: • The updating pheromone matrix for the second iteration is computed as described in the step 2 using the set of orders selected by the five ants in the first iteration. This is called as Updating pheromone matrix (2). • Pheromone matrix used in the 2nd iteration is computed as Pheromone matrix (2) = Pheromone matrix (1) +Updating Pheromone matrix (2) Step 5: Next set of orders selected by the five ants are computed as described in the step 3.
The orders selected by the four ants after 50 Iterations are displayed below. ANT1: ANT2: ANT3: ANT4: 1 1 3 4 2 2 2 2 3 3 7 3 4 4 4 7 5 5 1 1 6 6 6 6 7 7 5 5 8 8 8 8 Note that ANT1 and ANT2 found the best order as expected using Ant colony technique. Initially the cost values are having more changes. After 40th iteration, cost value gradually increases and reaches maximum which is the optimum cost corresponding the optimum order selected using Ant colony technique. 1. *Q(max(i,A(i)),min(i,A(i))); end Chapter 2 PROBABILITY AND RANDOM PROCESS Algorithm Collections 1.
- Theory of Society (Volume 2) (Cultural Memory in the by Niklas Luhmann
- Dialectic: The Pulse of Freedom (Classical Texts in Critical by Roy Bhaskar