By MathWorks
Read Online or Download Symbolic math toolbox for use with MATLAB : user's guide PDF
Similar software: systems: scientific computing books
Intuitive Probability and Random Processes using MATLAB
Intuitive likelihood and Random techniques utilizing MATLAB® is an creation to chance and random tactics that merges thought with perform. in line with the author’s trust that purely "hands-on" event with the fabric can advertise intuitive realizing, the process is to encourage the necessity for thought utilizing MATLAB examples, via thought and research, and eventually descriptions of "real-world" examples to acquaint the reader with a large choice of purposes.
Elektromagnetische Felder und Netzwerke: Anwendungen in Mathcad und PSpice
Thema des Buches ist die umfassende Darstellung der Berechnung elektromagnetischer Felder und Netzwerke unter besonderer Berücksichtigung moderner Computerprogramme, speziell Mathcad und PSpice. Zielgruppe sind Studenten der Elektrotechnik oder Physik der Hochschul-Eingangssemester, aber auch Dozenten, die sich in die Anwendung dieser Programmpakete einarbeiten wollen.
Gewöhnliche Differentialgleichungen: Theorie und Praxis - vertieft und visualisiert mit Maple®
Die Theorie der Gewöhnlichen Differentialgleichungen ist ein grundlegendes und unverändert aktuelles Gebiet der Mathematik. Das vorliegende Buch führt nicht nur äußerst sorgfältig und umfassend in die Theorie ein, sondern vermittelt auch aufgrund der zahlreichen vollständig durchgerechneten Beispiele einen Einblick in deren Anwendungspraxis.
Extra info for Symbolic math toolbox for use with MATLAB : user's guide
Sample text
Let’s now look at the second derivative of the function f. f2 = diff(f,2) f2 = 32/(5+4*cos(x))^3*sin(x)^2+4/(5+4*cos(x))^2*cos(x) 1-34 Calculus Equivalently, we can type f2 = diff(f,x,2). The default scaling in ezplot cuts off part of f2’s graph. Set the axes limits manually to see the entire function. ezplot(f2) axis([–2*pi 2*pi –5 2]) 32/(5+4*cos(x))^3*sin(x)^2+4/(5+4*cos(x))^2*cos(x) 2 1 0 −1 −2 −3 −4 −5 −6 −4 −2 0 x 2 4 6 From the graph, it appears that the values of f''(x) lie between -4 and 1.
Adds to 1/(1-x), provided |x| < 1. Three summations are demonstrated below. syms x k s1 = symsum(1/k^2,1,inf) s2 = symsum(x^k,k,0,inf) s1 = 1/6*pi^2 s2 = -1/(x-1) 1-30 Calculus Taylor Series The statement T = taylor(f,8) returns T = 1/9+2/81*x^2+5/1458*x^4+49/131220*x^6 which is all the terms up to, but not including, order eight (O(x8)) in the Taylor series for f(x). ∞ ∑ (x – a) n (n ) f (a) ----------------n! n=0 Technically, T is a MacLaurin series, since its basepoint is a = 0. These commands syms x g = exp(x*sin(x)) t = taylor(g,12,2) generate the first 12 nonzero terms of the Taylor series for g about x = 2.
Mathematical Operation ∫ n+1 x n x dx = ------------n+1 π⁄2 ∫ sin ( 2x ) dx = 1 MATLAB Command int(x^n) or int(x^n,x) int(sin(2*x),0,pi/2) or int(sin(2*x),x,0,pi/2) 0 g = cos ( at + b ) ∫ g ( t ) dt = sin ( at + b ) ⁄ a ∫ J1 ( z ) dz = – J0 ( z ) g = cos(a*t + b) int(g) or int(g,t) int(besselj(1,z)) or int(besselj(1,z),z) In contrast to differentiation, symbolic integration is a more complicated task. A number of difficulties can arise in computing the integral. The antiderivative, F, may not exist in closed form; it may define an unfamiliar function; it may exist, but the software can’t find the antiderivative; the software could find it on a larger computer, but runs out of time or memory on the available machine.
- Analog filters using MATLAB by Lars Wanhammar
- The Calculus Diaries_ How Math Can Help You Lose Weight, Win by Jennifer Ouellette