By Edited by Emilson Pereira Leite
Read Online or Download Scientific and Engineering Applications Using MATLAB (intech) PDF
Similar software: systems: scientific computing books
Intuitive Probability and Random Processes using MATLAB
Intuitive chance and Random procedures utilizing MATLAB® is an advent to likelihood and random tactics that merges idea with perform. in keeping with the author’s trust that in simple terms "hands-on" event with the cloth can advertise intuitive realizing, the process is to encourage the necessity for concept utilizing MATLAB examples, via thought and research, and at last descriptions of "real-world" examples to acquaint the reader with a large choice of purposes.
Elektromagnetische Felder und Netzwerke: Anwendungen in Mathcad und PSpice
Thema des Buches ist die umfassende Darstellung der Berechnung elektromagnetischer Felder und Netzwerke unter besonderer Berücksichtigung moderner Computerprogramme, speziell Mathcad und PSpice. Zielgruppe sind Studenten der Elektrotechnik oder Physik der Hochschul-Eingangssemester, aber auch Dozenten, die sich in die Anwendung dieser Programmpakete einarbeiten wollen.
Gewöhnliche Differentialgleichungen: Theorie und Praxis - vertieft und visualisiert mit Maple®
Die Theorie der Gewöhnlichen Differentialgleichungen ist ein grundlegendes und unverändert aktuelles Gebiet der Mathematik. Das vorliegende Buch führt nicht nur äußerst sorgfältig und umfassend in die Theorie ein, sondern vermittelt auch aufgrund der zahlreichen vollständig durchgerechneten Beispiele einen Einblick in deren Anwendungspraxis.
Additional resources for Scientific and Engineering Applications Using MATLAB (intech)
Sample text
8. ALTERNATE JUMP MODELS A few alternate jump distributions have been suggested in the literature to be better for certain data sets. A subset of other important jump distributions is outlined in this section. The underlying motivation has to do with matching the shape of the distribution tail to the jumps in the data as well as the ease of translating the jumpdiffusion process into models of asset, futures, and option prices. The best choice should always be judged on a case-by-case basis. 1. Normal Model The normal model generates Q with a normal density given by ϕQ (q) = ϕ(x; μj , σj2 ) = 1 − e (x−μj )2 2σj2 , 2π σj2 with mean μj and variance σj2 .
Briefly, the log-likelihood function is n L= ln f (Si |Si−1 , μ, σˆ i , λ) i=1 n L = − ln(2π ) − 2 n n 1 Si − Si−1 e−λδt − μ 1 − e−λδt 2σˆ i2 [ln(σˆ i )] − i=1 i=1 2 and the optimal parameters are n (Si −Si−1 e−λδt )/σˆ 2 i μ= i=1 n n(1 − e−λδt ) 1/σˆ 2 i i=1 σˆ 2 = 1 n n i=1 (Si − Si−1 e−λδt + μ(1 − e−λδt ))2 ⎛ n ⎜ 1 ⎜ ⎜ i=1 λ = − ln ⎜ δt ⎜ ⎝ Si − μ (Si−1 − μ) σˆ i2 n i=1 Si−1 − μ σˆ i2 2 ⎞ ⎟ ⎟ ⎟ ⎟. ⎟ ⎠ The equation just derived for σˆ is dependent on both μ and λ. Fortunately, the two coupled equations for μ and λ are only dependent on each other.
Rather, they are dependent on M1 , M2 , λ, and Qa , Qb . The last two, Qa , Qb , are interrelated to the mean jump by μj = (Qb + Qa ) 2 44 JUMP MODELS and variance by σj2 = (Qb − Qa )2 . 12 The function ModelJumpDiffusion(S ) takes in a set of asset closing prices S, or simulates a set of price data for a null input, and then converts the price data to a vector of log-returns. The heart of the program is a call to the Matlab function fminsearch that employs the LikeEval function to fit a set of parameters {λ, Qa , Qb }.
- Deschooling Society (Open Forum) by Ivan Illich
- Break-Out from the Crystal Palace: The Anarcho-Psychological by John Carroll