By Stephen Lynch
This re-creation has been completely up-to-date and extended to incorporate extra purposes, examples, and workouts, all with options. It includes new chapters on neural networks and simulation.
Read or Download Dynamical Systems with Applications using MAPLE PDF
Best software: systems: scientific computing books
Intuitive Probability and Random Processes using MATLAB
Intuitive chance and Random techniques utilizing MATLAB® is an advent to likelihood and random techniques that merges conception with perform. in response to the author’s trust that simply "hands-on" event with the cloth can advertise intuitive realizing, the process is to encourage the necessity for concept utilizing MATLAB examples, through concept and research, and at last descriptions of "real-world" examples to acquaint the reader with a large choice of functions.
Elektromagnetische Felder und Netzwerke: Anwendungen in Mathcad und PSpice
Thema des Buches ist die umfassende Darstellung der Berechnung elektromagnetischer Felder und Netzwerke unter besonderer Berücksichtigung moderner Computerprogramme, speziell Mathcad und PSpice. Zielgruppe sind Studenten der Elektrotechnik oder Physik der Hochschul-Eingangssemester, aber auch Dozenten, die sich in die Anwendung dieser Programmpakete einarbeiten wollen.
Gewöhnliche Differentialgleichungen: Theorie und Praxis - vertieft und visualisiert mit Maple®
Die Theorie der Gewöhnlichen Differentialgleichungen ist ein grundlegendes und unverändert aktuelles Gebiet der Mathematik. Das vorliegende Buch führt nicht nur äußerst sorgfältig und umfassend in die Theorie ein, sondern vermittelt auch aufgrund der zahlreichen vollständig durchgerechneten Beispiele einen Einblick in deren Anwendungspraxis.
Additional resources for Dynamical Systems with Applications using MAPLE
Sample text
I (t) = - The periodic expression ~ sin (t)- ~ cos(t) is called the steady state, and the term Hie-! is called the transient. Note that the transient decays to zero as t -+ oo. Example 10. t. time and substitute for ~ to obtain d 2I di 1 dE L-+R-+-I=-. dt2 dt c dt The second-order differential equation for a certain RLC circuit is given by d 2I dt 2 di + 5 dt + 6I = Solve this differential equation given that I (0) . 10sm(t). = i (0) = 0 (a passive circuit). 4. Existence and Uniqueness Theorem 27 Solution.
At each Consider the slope of the trajectories: The slopes are given by point (x, y) in the plane. Manifolds: There is one linearly independent eigenvector, (0, I) T. Therefore, the critical point is a stable degenerate node. The stable manifold Es is the y axis. 1 0. * x Phase portraits of nonlinear planar autonomaus systems will be considered in the next chapter, where stable and unstable manifolds do not necessarily lie on straight lines. However, all is not lost as the manifolds for certain critical points are tangent to the eigenvectors of the linearized system at that point.
10)o A critical point that is not stable is called an unstable critical point. 4. Existence and Uniqueness Theorem 29 Example 12. i = x 2 - 1. Solutions. (a) There is one critical point at xo = 0. i > 0. Therefore, xo is an unstable critical point. Solutions starting either side of xo are repelled from it. (b) There is one critical point at xo = 0. i < 0. Solutions starting either side of xo are attracted towards it. The critical point is stable. (c) There are two critical points, one at X! = -1 and the other at x2 = 1.
- MATLAB 6.5: Eine Einführung by Ao. Univ.-Prof. Dipl.-Ing. Dr. Christoph Überhuber,
- Essential Matlab For Engineers And Scientists by Brian Hahn, Daniel T. Valentine Ph.D.