By E.S. Gopi

Kurzbeschreibung

The Algorithms similar to SVD, Eigen decomposition, Gaussian blend version, HMM and so forth. are almost immediately scattered in numerous fields. There continues to be a necessity to assemble all such algorithms for fast reference. additionally there's the necessity to view such algorithms in program perspective. This ebook makes an attempt to meet the above requirement. The algorithms are made transparent utilizing MATLAB courses.

Buchrückseite

The Algorithms reminiscent of SVD, Eigen decomposition, Gaussian mix version, HMM and so on. are scattered in numerous fields. there's the necessity to acquire all such algorithms for fast reference. additionally there's the necessity to view such algorithms in software viewpoint. set of rules Collections for electronic sign Processing purposes utilizing MATLAB makes an attempt to fulfill the above requirement. additionally the algorithms are made transparent utilizing MATLAB courses.

Show description

Read or Download Algorithm Collections for Digital Signal Processing Applications using Matlab PDF

Best software: systems: scientific computing books

Intuitive Probability and Random Processes using MATLAB

Intuitive likelihood and Random methods utilizing MATLAB® is an creation to likelihood and random approaches that merges idea with perform. in accordance with the author’s trust that in simple terms "hands-on" event with the fabric can advertise intuitive figuring out, the method is to inspire the necessity for conception utilizing MATLAB examples, by means of conception and research, and at last descriptions of "real-world" examples to acquaint the reader with a large choice of purposes.

Elektromagnetische Felder und Netzwerke: Anwendungen in Mathcad und PSpice

Thema des Buches ist die umfassende Darstellung der Berechnung elektromagnetischer Felder und Netzwerke unter besonderer Berücksichtigung moderner Computerprogramme, speziell Mathcad und PSpice. Zielgruppe sind Studenten der Elektrotechnik oder Physik der Hochschul-Eingangssemester, aber auch Dozenten, die sich in die Anwendung dieser Programmpakete einarbeiten wollen.

Gewöhnliche Differentialgleichungen: Theorie und Praxis - vertieft und visualisiert mit Maple®

Die Theorie der Gewöhnlichen Differentialgleichungen ist ein grundlegendes und unverändert aktuelles Gebiet der Mathematik. Das vorliegende Buch führt nicht nur äußerst sorgfältig und umfassend in die Theorie ein, sondern vermittelt auch aufgrund der zahlreichen vollständig durchgerechneten Beispiele einen Einblick in deren Anwendungspraxis.

Additional info for Algorithm Collections for Digital Signal Processing Applications using Matlab

Example text

The fuzzy base rule is as given in the table 1-1. 2 are assumed as mentioned in the table 1-2. Table 1-2. 2 Figure 1-20. Relationship between crisp value and fuzzy membership for the Input variable X in the example 1. 4 ___________________________________________________________ fuzzygv . m posx=[0 3 5 7 10]; maxx=max(posx); posx=posx/max(posx); posy=[0 20 45 65 100]; maxy=max(posy); posy=posy/max(posy); posz=[0 35 70 90 100]; maxz=max(posz); posz=posz/max(posz); i=posx(1):1/999:posx(2); j=(posx(2)):(1/999):posx(3); k=(posx(3)):(1/999):posx(4); l=(posx(4)):(1/999):posx(5); xsmall=[1/posx(2)*i (-1/(posx(3)-posx(2))*(j-posx(3))) zeros(1,length([k l]))]; xmedium =[zeros(1,length([i])) (1/(posx(3)-posx(2))*(j-posx(2))) (-1/(posx(4)posx(3))*(k-posx(4))) zeros(1,length([l]))]; xlarge=[zeros(1,length([i j])) (1/(posx(4)-posx(3))*(k-posx(3))) (-1/(posx(5)-posx(4))*(lposx(5))) ]; figure plot([i j k l]*maxx,xsmall,':'); hold plot([i j k l]*maxx,xmedium,'-'); plot([i j k l]*maxx,xlarge,'--'); xlabel('crisp value') ylabel('fuzzy value') title('XINPUT') i=posy(1):1/999:posy(2); j=(posy(2)):(1/999):posy(3); k=(posy(3)):(1/999):posy(4); l=(posy(4)):(1/999):posy(5); ysmall=[1/posy(2)*i (-1/(posy(3)-posy(2))*(j-posy(3))) zeros(1,length([k l]))]; 42 Chapter 1 ymedium =[zeros(1,length([i])) (1/(posy(3)-posy(2))*(j-posy(2))) (-1/(posy(4)posy(3))*(k-posy(4))) zeros(1,length([l]))]; ylarge=[zeros(1,length([i j])) (1/(posy(4)-posy(3))*(k-posy(3))) (-1/(posy(5)-posy(4))*(lposy(5))) ]; figure plot([i j k l]*maxy,ysmall,':'); hold plot([i j k l]*maxy,ymedium,'-'); plot([i j k l]*maxy,ylarge,'--'); xlabel('crisp value') ylabel('fuzzy value') title('YINPUT') i=posz(1):1/999:posz(2); j=(posz(2)):(1/999):posz(3); k=(posz(3)):(1/999):posz(4); l=(posz(4)):(1/999):posz(5); zsmall=[1/posz(2)*i (-1/(posz(3)-posz(2))*(j-posz(3))) zeros(1,length([k l]))]; zmedium =[zeros(1,length([i])) (1/(posz(3)-posz(2))*(j-posz(2))) (-1/(posz(4)posz(3))*(k-posz(4))) zeros(1,length([l]))]; zlarge=[zeros(1,length([i j])) (1/(posz(4)-posz(3))*(k-posz(3))) (-1/(posz(5)-posz(4))*(lposz(5))) ]; figure plot([i j k l]*maxz,zsmall,':'); hold plot([i j k l]*maxz,zmedium,'-'); plot([i j k l]*maxz,zlarge,'--'); xlabel('crisp value') ylabel('fuzzy value') title('ZOUTPUT') xinput=[6]; xinput=round(((xinput/maxx)*1000)) yinput=[50]; yinput=round(((yinput/maxy)*1000)) %fuzzy values xfuzzy=[xsmall(xinput) xmedium(xinput) xlarge(xinput)]; yfuzzy=[ysmall(yinput) ymedium(yinput) ylarge(yinput)]; 1.

Suppose if q3 is the lowest among the values in the vector, the number 3 is assigned to the variable u8. This is called one iteration. Step 4: • The updating pheromone matrix for the second iteration is computed as described in the step 2 using the set of orders selected by the five ants in the first iteration. This is called as Updating pheromone matrix (2). • Pheromone matrix used in the 2nd iteration is computed as Pheromone matrix (2) = Pheromone matrix (1) +Updating Pheromone matrix (2) Step 5: Next set of orders selected by the five ants are computed as described in the step 3.

The orders selected by the four ants after 50 Iterations are displayed below. ANT1: ANT2: ANT3: ANT4: 1 1 3 4 2 2 2 2 3 3 7 3 4 4 4 7 5 5 1 1 6 6 6 6 7 7 5 5 8 8 8 8 Note that ANT1 and ANT2 found the best order as expected using Ant colony technique. Initially the cost values are having more changes. After 40th iteration, cost value gradually increases and reaches maximum which is the optimum cost corresponding the optimum order selected using Ant colony technique. 1. *Q(max(i,A(i)),min(i,A(i))); end Chapter 2 PROBABILITY AND RANDOM PROCESS Algorithm Collections 1.

Download PDF sample

Algorithm Collections for Digital Signal Processing by E.S. Gopi
Rated 4.21 of 5 – based on 28 votes