By Emmanuel Hebey (auth.)

Several books care for Sobolev areas on open subsets of R (n), yet none but with Sobolev areas on Riemannian manifolds, even though the speculation of Sobolev areas on Riemannian manifolds already is going again approximately two decades. The publication of Emmanuel Hebey will fill this hole, and turn into an important analyzing for all utilizing Sobolev areas on Riemannian manifolds.
Hebey's presentation is especially particular, and comprises the newest advancements due quite often to the writer himself and to Hebey-Vaugon. He makes quite a few issues extra distinctive, and discusses the hypotheses to check whether or not they should be weakened, and in addition offers new results.

Show description

Read or Download Sobolev Spaces on Riemannian Manifolds PDF

Similar functional analysis books

Harmonic Analysis, Real Variable Methods Orthogonality & Oscillatory Integrals. Stein

This publication comprises an exposition of a few of the most advancements of the final two decades within the following parts of harmonic research: singular imperative and pseudo-differential operators, the speculation of Hardy areas, L\sup\ estimates regarding oscillatory integrals and Fourier critical operators, relatives of curvature to maximal inequalities, and connections with research at the Heisenberg crew.

The Mathematics of Arbitrage

This long-awaitedВ book goals at a rigorous mathematical therapy of the idea of pricing and hedging of by-product securities through the primary of no arbitrage. In theВ first half the authorsВ present a comparatively undemanding creation, proscribing itself to the case of finite chance areas. the second one half is composed in an up-to-date version of 7 unique learn papers via the authors, which examine the subject within the normal framework of semi-martingale thought.

Spectral Theory in Inner Product Spaces and Applications: 6th Workshop on Operator Theory in Krein Spaces and Operator Polynomials, Berlin, December 2006

This e-book encompasses a selection of contemporary learn papers originating from the sixth Workshop on Operator concept in Krein areas and Operator Polynomials, which used to be held on the TU Berlin, Germany, December 14 to 17, 2006. The contributions during this quantity are dedicated to spectral and perturbation conception of linear operators in areas with an internal product, generalized Nevanlinna services and difficulties and functions within the box of differential equations.

Green's functions and boundary value problems

This revised and up-to-date moment variation of Green's capabilities and Boundary worth difficulties keeps a cautious stability among sound arithmetic and significant functions. principal to the textual content is a down-to-earth process that exhibits the reader easy methods to use differential and necessary equations while tackling major difficulties within the actual sciences, engineering, and utilized arithmetic.

Extra resources for Sobolev Spaces on Riemannian Manifolds

Sample text

Die Auswahl an Begriffen und Sätzen ist jedoch so gewählt, dass auch ohne weiteres Literaturstudium die nachfolgenden Kapitel verstanden werden können. Wir betrachten lineare Abbildungen T : X → Y . Hierbei bezeichnen (X, · X ) und (Y, · Y ) normierte Räume über demselben Körper K (= R ∨ C). T heißt beschränkt := ∃ C ≥ 0 ∀ u ∈ X : Tu Y ≤C u X . 14) Mit diesem Begriff kann die Stetigkeit linearer Operatoren charakterisiert werden. 24 Für lineare Operatoren T : X → Y sind die folgenden drei Bedingungen äquivalent: (i) T ist stetig auf ganz X.

47 X := Y := l2 und T (x1 , x2 , x3 , . ) := (0, x1 , x2 , . ) die Rechtsverschiebung. Da T injektiv ist, folgt dim ker(T ) = 0. Andererseits ist codim R(T ) = 1 und somit ind(T ) = −1. Man überlegt sich leicht, dass ind(T n ) = −n (n ∈ N) gilt. Wir betrachten ein Beispiel eines linearen stetigen Operators, der kein FredholmOperator ist. 52 Es seien X = Y := C 0 [−1, 1] und beide Räume mit der Max-Norm ausgestattet. Der Operator T sei definiert durch s T :X→Y , (T x)(s) := x(t) dt −1 (s ∈ [−1, 1]) .

Iii) T ist stetig in x0 ∈ X. Damit haben wir ein bemerkenswertes Ergebnis: Ein linearer Operator ist entweder in jedem Punkt stetig oder in jedem Punkt unstetig. Wir setzen L(X, Y ) := { T : X → Y | T ist linear und beschränkt } und nennen L(X, Y ) den Vektorraum der linearen stetigen Operatoren. Es lässt sich nämlich leicht zeigen, dass L(X, Y ) mit den üblichen Operationen der Addition „+“ und der skalaren Multiplikation „·“ ein Vektorraum ist. Wir führen nun in L(X, Y ) eine geeignete Norm ein.

Download PDF sample

Sobolev Spaces on Riemannian Manifolds by Emmanuel Hebey (auth.)
Rated 4.85 of 5 – based on 39 votes